Microtubules as Cavities : Quantum Coherence and Energy Transfer ?

نویسنده

  • N. E. Mavromatos
چکیده

A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of micro-tubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the micro-tubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the fal-sification of this scenario.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quantum Mechanical Aspects of Microtubules

We discuss possible quantum mechanical aspects of MicroTubules (MT), based on recent developments in quantum physics. We focus on potential mechanisms for 'energy-loss-free' transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the rôle of solitons for superconductivity and/or biological matter. In particular, by representing the MT arrangements as c...

متن کامل

QED-Cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation

We refine a QED-cavity model of microtubules (MTs), proposed earlier by two of the authors (N.E.M. and D.V.N.), and suggest mechanisms for the formation of biomolecular mesoscopic coherent and/or entangled quantum states, which may avoid decoherence for times comparable to biological characteristic times. This refined model predicts dissipationless energy transfer along such “shielded” macromol...

متن کامل

The feasibility of coherent energy transfer in microtubules.

It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, e...

متن کامل

Thermal effect and role of entanglement and coherence on excitation transfer in a spin chain

We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...

متن کامل

Anesthetics act in quantum channels in brain microtubules to prevent consciousness.

The mechanism by which anesthetic gases selectively prevent consciousness and memory (sparing non-conscious brain functions) remains unknown. At the turn of the 20(th) century Meyer and Overton showed that potency of structurally dissimilar anesthetic gas molecules correlated precisely over many orders of magnitude with one factor, solubility in a non-polar, 'hydrophobic' medium akin to olive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000